Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Satyawati Sharma

CRDT, IIT New Delhi, India

Title: Bioethanol Production from Perennial Grasses

Biography

Biography: Satyawati Sharma

Abstract

In the present demand for renewable and sustainable sources of energy to overcome the burden of world energy crisis, perrenial grasses present exciting options. Panicum virgatum (Switchgrass) the ligno-cellulosic perennial grass, being considered as a cheaper and efficient feedstock for bioethanol production in Europe and USA, could also be utilized in India for same purpose. The present work focuses on cultivation of P. virgatum (very first time in India) and P. maximum, for bioethanol production. The seeds of the Switch grass were obtained from Univ. of Bologna, Italy, while of guinea grass from IGFRI, Jhansi, UP, India. Both the grasses were cultivated in Micromodel (an experimental field site), IIT Delhi. The harvested grass biomass was analyzed for various parameters including reducing sugars for subsequent bioethanol production. Among different pretreatment methods (Acid pretreatment, Alkali pretreatment and Microwave pretreatment) tested , alkali method showed maximum reducing sugars (280 mg/g for P. virgatum and 262 mg/g for P. maximum ) with 15 % reduction in crystallinity of cellulose in P. virgatum and 12% in P. maximum. It was further optimized with RSM and CCD was applied. Joint effects of four independent variables: NaOH (1-5%), temp. (60-100 �C), substrate loading (1-3%), and reaction time (30-150 min), were investigated to increase in reducing sugar content. The combined optimum conditions for maximum reducing sugar (68.3% ) were: 2.5% substrate, 5% NaOH, a reaction time 120 min at 100 �C. The result analyzed (ANOVA) with a second order polynomial equation. showed 62 - 68 % significant increase in reducing sugars. The calculated theoretical ethanol production from switch grass was found to be 26.72%, while for P. maximum it was 25.24%. This study reveals that under optimized pretreatment conditions, sugar yield is significantly increased and promises the use of both P. virgatum and P. maximum grasses as feedstock for bioethanol production in India also. All the findings pertaining to all steps in cultivation, characterization, pretreatment and hydrolysis methods and bioethanol from these grasses will be presented at conference. Recent Publications 1. Adak, A., Tiwari, R., Singh, S., Sharma, S., & Nain, L. (2016) Laccase Production by a Novel White-Rot Fungus, Pseudolagarobasidium acaciicola LA 1 Through Solid-State Fermentation of Parthenium Biomass and Its Application in Dyes Decolorization. Waste and Biomass Valorization, 7, 1427-1435. 2. Arora, K., Sharma, S., & Monti, A. (2016) Bio- remediation of Pb and Cd polluted soils by switchgrass: A case study in India. International Journal of Phytoremediation, 7(18), 704-709. 3. Arora, K.; Kumar, A., & Sharma, S. (2012) Energy from Waste: Present Scenario, Challenges and Future Prospects towards Sustainable Development. IGI Global, 271-296. 4. Tiwari, G., Shivangi, Sharma, S., & Prasad, R. (2015) Bioethanol production: Future prospects from non-traditional sources in India. International Journal of Research in Biosciences, 4, 1-15. 5. Kumar, A., & Sharma, S. (2011) Non-edible oil seeds as biodiesel feedstock for meeting energy demands in India, Renewable and Sustainable Energy Reviews, 15, 1791-1800.