Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Álvaro Cruz-Izquierdo

Álvaro Cruz-Izquierdo

University of Bath, United Kingdom

Title: Cellulose-based films for electronics. Enzymatic triggered degradation for metal recovery

Biography

Biography: Álvaro Cruz-Izquierdo

Abstract

Cellulose, the most abundant polymer in nature, is composed of glucose units with the resulting linear polymeric chains having both inter- and intrachain hydrogen bonding in the crystalline polymer. In recent years, ionic liquids have been shown to be exceptional solvents for cellulose and thus hold great promise as biomass pre-treatment media. Additionally, the reconstitution of cellulose after ionic liquid not only facilitates formation of films, but also the pre-treatment increases enzymatic digestibility by cellulases. Different fillers can be also added to cellulose in order to give new properties to the regenerated films, such as greater flame retardancy or hydrophobicity. The aim of this work is to develop new cellulose-based films in order to use them as printing board for electronics. In this way, this new bio-based scaffold will hold conductive ink and different metals that are found in electronics. Moreover, an enzymatic treatement with cellulases will decompose the cellulose scaffolds and will facilitate the recovery of the precious metals in the material. In this work, α-cellulose was solubilised by 1-ethyl-3-methylimidazolium acetate and cellulose films were obtained by phase inversion and treated with different fillers (e.g. laponite, amonium polyphosphate) and hydrophobizing agents (e.g. ethyl 2-cyanoacrylate, lignin). Different enzymatic studies were carried out in order to understand how they are affected by added fillers, agents and most metals found in e-waste. Moreover, a particular effort was made in order to develop specific method to use lignin as hydrophobizing agent.